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1 EXTENDED ABSTRACT
Protecting computer networks against unlawful intrusion, or oth-
erwise malicious a�ack, is important. �is task is increasingly
relevant, especially as networks expand their reach by connecting
to public networks, such as the Internet. �is seemingly unreg-
ulated network provides a multitude of opportunities for cyber
a�ackers, motivated by many factors, including revenge, prestige,
politics and money. Intrusion Detection Systems (IDS) are tools de-
signed to thwart these a�acks, both pro-actively and reactively.
�ese systems have become fundamental components of computer
security architecture [7], identifying vulnerabilities and mitigat-
ing a�acks against the networks they protect. Historically, these
systems are o�en plagued by high rates of false alarms [12].

In this study, the e�cacy of the Automated Pa�ern Identi�ca-
tion and Classi�cation (APIC) [5] Machine Learning (ML) pipeline
method was evaluated as an Anomaly Intrusion Detection (AID) sys-
tem to determine if using an ML-pipeline method could reduce false
positive rates compared to similar methods using the same data set.
�is abstract �rst provides a brief overview of the APIC method,
followed by the results of an experiment where the utility of the
method was evaluated on a popular, publicly available IDS test data
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set. �e experiment showed the method scored high degrees of
accuracy, exhibiting fewer false positives than most methods.

�e APIC method is an e�cient, adaptable, general method
capable of identifying pa�erns in mixed, noisy data sets across a
variety of domains [3–5]. �ese domains include Internet Protocol
(IP) networking, where many classi�cation tasks remain unsolved,
or poorly solved with respect to completeness, accuracy, portability
or false positive rates. �e APIC method automatically discovers
and creates near-optimal independent classi�ers for identifying
future instances of each pa�ern discovered in mixed, noisy data sets.
�e method provides high degrees of automation, incorporating
feature selection (extraction), pa�ern identi�cation and classi�er
development processes into a single pipeline method.

�eAPICmethod processes data sets comprised ofn-dimensional,
numerical feature vectors representing data for each problem. Fea-
ture vectors with increased dimensionality are inherently more task
intensive and incur additional overheads when training ML algo-
rithms. Using Evolutionary Algorithms (EA) [1], the APIC method
identi�es the best feature subsets for each problem, removing re-
dundant or irrelevant features, such that the accuracy achieved
by models trained using the subset equals or surpasses that of the
original data set. �e APIC method adopts a similar approach to
that of Huang et al.[6] and Vafaie et al. [13], encoding feature
sets as bit-strings, where individual features are toggled on and
o� by a Genetic Algorithm (GA) [1], in search of the most opti-
mal subset. A low dimensional feature subset is encouraged by
applying a penalty to the �tness score of each genotype, propor-
tional to its dimensionality. �e �nal �tness score is determined
by fscore = fscore ∗ 1/|дenotype |, where each genotype’s �tness
score is multiplied by the magnitude of its genes, divided into one.
�is ensures those with lower dimensionality are more favourable
than those with higher cardinality, promoting the reduction of
unnecessary features, ultimately reducing task complexity.

�e APIC method clusters the data set, tuning hyper-parameters
using a GA. �e clusters discovered by the best scoring clustered
data set form labelled training sets for the production of supervised
or semi-supervised classi�ers. �e method allows the number of
clusters to be set explicitly, or to be inferred automatically through
an automated discovery process. Where the number of pa�erns, or
targets, are not speci�ed, the method uses the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) [2] algorithm to
discover them automatically. If the number of targets, k , are known
a priori, the k-means [8] algorithm is used to partition the datum
into k clusters.
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Method AR DR FPR

NBC [15] 82.80% 13.80% 17.6%
KMC+NBC [15] 99.80% 95.40% 0.13%
RF [7] 99.99% 99.81% 0.01%
XM-RF [7] 99.99% 99.95% 0.00%
APIC 99.97% 99.92% 0.004%

Method AR DR FPR

TANN [12] 96.91% 98.95% 3.83%
KM-1R [9] 99.26% 99.33% 2.73%
NBC [15] 88.20% 85.00% 33.70%
KMC+NBC [15] 99.00% 98.80% 2.2%
XM-1R [7] 93.68% 95.20% 9.26%
RF [7] 99.91% 99.94% 0.11%
XM-RF [7] 99.96% 99.99% 0.02%
APIC 99.91% 99.90% 0.08%

Table 1: �e Accuracy Rate (AR), Detection Rate (DR) and
False Positive Rates (FPR) rate achieved by each method.

A unique classi�er is produced for each cluster discovered by
the search process. Automatic discovery and annotation of training
sets in this manner removes dependency on human intervention,
resulting in increased completeness and accuracy of the system. �e
APIC method produces a customised Topology and Weight Evolving
Arti�cial Neural Network (TWEANN) [14] classi�er for each pa�ern
discovered. Using a semi-supervised training process, the design of
each classi�er is optimised using GAs and the Backward Propagation
of Errors (back-propagation) algorithm [10].

�e best scoring TWEANN classi�ers for each pa�ern are gath-
ered for each feature subset and evaluated against predetermined
criterion. In this experiment, the average recall accuracy achieved
by the classi�ers should exceed 0.75, for both the training and test
datasets. If the classi�ers meet or exceed the de�ned minima, they
are accepted and exit the training process. A failure to reach ade-
quate approval triggers further generations of the feature subset
selection GA, where the adaptation process is repeated until the
success criterion is met, or another stop condition is triggered.

�e APIC method was tested as a victim-end Network Based In-
trusion Detection (NBAD) system, using the pre-labelled Information
Security Centre of Excellence (ISCX) 2012 IDS data set [11]1. �e
experiments followed the design set forth by Yassin et al. [15] and
Juma et al. [7], where a subset of the ISCX data set was used to
evaluate each respective method. �e training and testing data
sets comprised 77,526 and 56,421 �ow samples respectively, con-
taining summary information for service transactions describing
web (Hypertext Transfer Protocol (HTTP)), E-Mail (Post O�ce Proto-
col (POP)/Simple Mail Transport Protocol (SMTP)), Domain Name
Services (DNS) and Secure Shell (SSH) �ows. �e accuracy, detec-
tion and false positive rates achieved by the APIC method and
comparable methods, for this task, are outlined in table 1.

1h�p://www.unb.ca/research/iscx/dataset/

Results in table 1 demonstrate that the APIC method achieves
lower false positive rates for all but one of the comparable methods,
designed speci�cally as a victim-end NBAD system. Contrary to the
KMC+NBC and XM-RF methods, proposed by Yassin et al. [15] and
Juma et al. [7] respectively, the APIC method is a general method,
applicable to a broad range classi�cation tasks. It scores well with-
out encoding domain-speci�c knowledge, or customization to sup-
port speci�c tasks. Using GA-controlled, hyper-parameter opti-
mization processes, the method is capable of identifying distinct
groups of data (clusters) and modelling classi�ers more accurately
for each problem than methods using a heuristic approach guided
by human experts. To date, specially designed NBAD systems are
required to detect anomalous tra�c in these data sets. �e results
of this work, however, indicate that ML-pipeline methods, such as
APIC, yield comparable task performance to manually-designed
NBAD methods, exhibiting lower false positive rates than these
comparable methods. �e application of automated ML-pipeline
methods for anomaly detection in various tasks provides exciting
opportunities for future research.
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